Efficiency of labriform swimming in the bluegill sunfish (Lepomis macrochirus).
نویسندگان
چکیده
Bluegill sunfish (Lepomis macrochirus) swim in the labriform mode at low speeds, generating lift and thrust by beating their pectoral fins. The maximal power output available from the two largest pectoral fin adductor and abductor muscles, constituting half of the total pectoral girdle muscle mass, was measured in vitro and used to estimate the muscle mechanical power output during maximal labriform swimming (Pmech; 0.15-0.21 W kg(-1) body mass). Respirometry was used to estimate the total metabolic power input (Ptotal; 0.95 W kg(-1) body mass) and the metabolic power available to the active muscle mass (Pmuscle; Ptotal minus standard metabolic rate, 0.57 W kg(-1) body mass) at this swimming speed. Drag measurements made on towed, dead fish were used to estimate the mechanical power required to overcome body drag (Pdrag; 0.028 W kg(-1) body mass). Efficiency estimates based on these data fell into the following ranges: overall swimming efficiency (etagross=Pmech/Ptotal), 0.16-0.22; muscle efficiency (etamuscle=Pmech/Pmuscle), 0.26-0.37; and propeller efficiency (etaprop=Pdrag/Pmech), 0.15-0.20. Comparison with other studies suggests that labriform swimming may be more efficient than swimming powered by undulations of the body axis.
منابع مشابه
Mechanical and energetic factors underlying gait transitions in bluegill sunfish (Lepomis macrochirus).
As their swimming speed increased, bluegill sunfish (Lepomis macrochirus) switched from pectoral-fin-powered labriform swimming to undulations of the body axis. This gait transition occurred at a mean swimming speed of 0.24+/-0.01 m s(-1) and a pectoral fin beat frequency of 2.79+/-0.11 Hz (mean +/- s.e.m., N=6). The power output available from the main upstroke (adductor profundus) and downstr...
متن کاملThe effects of acute temperature change on swimming performance in bluegill sunfish Lepomis macrochirus.
Many fish change gait within their aerobically supported range of swimming speeds. The effects of acute temperature change on this type of locomotor behavior are poorly understood. Bluegill sunfish swim in the labriform mode at low speeds and switch to undulatory swimming as their swimming speed increases. Maximum aerobic swimming speed (U(max)), labriform-undulatory gait transition speed (U(tr...
متن کاملField swimming performance of bluegill sunfish, Lepomis macrochirus: implications for field activity cost estimates and laboratory measures of swimming performance
Mobility is essential to the fitness of many animals, and the costs of locomotion can dominate daily energy budgets. Locomotor costs are determined by the physiological demands of sustaining mechanical performance, yet performance is poorly understood for most animals in the field, particularly aquatic organisms. We have used 3-D underwater videography to quantify the swimming trajectories and ...
متن کاملFin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (Lepomis macrochirus).
For many fish species, the pectoral fins serve as important propulsors and stabilizers and are precisely controlled. Although it has been shown that mechanosensory feedback from the fin ray afferent nerves provides information on ray bending and position, the effects of this feedback on fin movement are not known. In other taxa, including insects and mammals, sensory feedback from the limbs has...
متن کاملVariation in fast-start performance within a population of polyphenic bluegill (Lepomis macrochirus).
Bluegill sunfish Lepomis macrochirus exhibit intraspecific variation in their morphology and swimming performance based on habitat. The pelagic form has a relatively streamlined, fusiform body shape associated with greater steady-state swimming speed and energy economy. In contrast, littoral bluegill have deeper bodies with fins located farther from their center of mass to enhance maneuverabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 210 Pt 19 شماره
صفحات -
تاریخ انتشار 2007